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ABSTRACT -

The problem of steady-state, radiative transport through a
finite, spherically symmetric and uniformly generating medium is
considered. The governing equations are applicable to the study
of thermal radiation in a heat generating grey gas as well as to

the idealization proposed by Cuperman, Engelmann, and Oxenius to

study radiation loss in a homogenéous, isothermal spherical
plasma due to an optically thick spectral lih; associated with the
de-excitation energy of two-level impurity ions. The analysis is
related directly to the study of a one-dimensional problem in a

slab of finite‘optical thickness. This equivalence then permits

the direct application of results based on the invariance prin-
 ;§§1es of Ambartsumian and Chandrasekhar. Invparticular, exact

" . expressions are derived for the source function at the spherical
boundary and the radiative flux loss. These results are expressed

in terms of tabulated moments of Chandrasekhar's X and Y functions.
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INTRODUCTION

.

This paper considers the prediction of steady-state radiative transport
through a finite and homogeneous spherical medium that is releasing energy
uniformly. The main objective is the determination of explicit expressions
for the total power loss of the system and the surface value of the source
emission function. The analysis is simplified at the outset by establish-
ing a formal equivalence between transport problems in a unidimensional
slab and in the spherical region. This equivalence then permits the direct
application of special techniques introduced originally by Ambartsumian
and Chandrasekhar to treat planar problems. )

Since the governing equations have been developéd fully elsewhere, a
standard formulation is accepted at the outset,éf the next section. The
standard treatises of Chandrasekhar,® Kourganoff,2 and Sobolev® provide
derivations of the integral transfer equations and, in application, proceed
to detailed analysis éf radiation in a plane-parallel medium. The equations

are sufficiently general to permit different physical interpretations.

From one point of view, one may consider the passage of thermal radistion

through a heat—geﬁérating medium which has a constant volumetric absorption
coefficient Kk indeperndent of frequency, the so;;alled grey case, and a
known heat-generation rate per unit volume. Thermal transport through
spherical enclosures has been calculated numerically by Sparrow, Usiskin,
and Hubbard® and the present exact results complement that work. Special
attention is also directed to the model introduced by Cuperman, Engelmann,
and Oxenius®’® to characterize the steady-state energy loss of a homogeneous
and isothermal plasma due to de-excitation radiation of impurity ions that
are assumed to have two energy levels only. In this case, radiation loss

is associated with an optically thick spectral line and is calculated
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under the assumption that all other transitions of the ions remain optically
thin. The results given below for an extensive range of parameters may be
compared directly with the particular numerical cases for a sphere given

by Cuperman et al.®’® A third physical interpretation involves the
isotropic scattering of light in a spherical region.

So far as we are aware the literature of radiation theory contains
little exploitation of the close connection between the spherical problem
and the planar case. Our initial concern was motivated by intuitive con-
siderations of the simi}arity between radiative flux for optically thick
materials and conductive heat flux where, in the latter case, the formal
equivalence for the two geometries is well known (see, e.g., Carslaw
and Jaeger,7 p. 230). After this analysis was completed, it was discovered.
that the interrelationship has received more attention in the development
of neutron transport theory (see, e.g., Davison®). Our principal con-
tribution appears in the expression of physically significant quantities,
namely, the surface emission function and the power loss, in terms of known
physical parameters and moments of the Chandrasekhar-Ambartsumian functidns,
X and Y. Sdbouti?khas recently supplied tabular values for most of the

required moments, and Sobolev,®

in turn, has givap asymptotic expressions
for X and Y which aid in the calculation of limiting cases. The needed
additions to Sobouti's tables are supplied here. These additional moments,
together with expressions obtained through the use of Sobolev's relations,
are of some general interest and may prove useful in transfer problems
arising in other examples of radiative interchange.

Throughout the analysis, dependence on the radiation frequency is
suppressed in the terminology. Whether one interprets the solution in
terms of emission associated with a narrow spectral line or of an average

over a continuous spectrum is a matter of personal interest and requires

no change in notation.
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GOVERNING EQUATIONS

Consider a spherical region of radius R. The integral equation
governing radiative transfer will be written in terms of the dimension-
less variable p 1in a form that differs only in minor details from

the terminology of Cuperman et al.,® namely,

w kR
pS(e) = pB(p) + 3 f ey S(pE (Je-p ) - E ([o*e,[)]dp, (1)
o]

where Ej;(x) is the first exponential integral function defined with

-

general index as

®© XX i
) = [ e e [ (2)
1 (o]

X1

The absorption coefficient «k is averaged over the frequency interval
and is assumed’to be independent of position, r 1is distance measured
from the center of the sphere, p = kr, and S(p) is, in the language of
radiation theory, the source emission function. The interpretation of

w depends on the particular application. In the problem of radiative
heat transfer through é nonisothermal, absorbing and heat-generating
medium the governing equations are algebraically equivalent if w = 1.
Also LxkB(p) is power generated per unit volume and the entire frequency
range of Planck's function BV(T) is considered from which one gets

S(p) = oT*(r)/n where T(r) is local temperature. In the model of
Cuperman et al.® the medium is isothermal and in Eq. (1) B = (1-w) By(To)

where w 1is constant and depends on the line absorption coefficient and

the excitation process. In the case of isotropic scattering, w is the
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spherical indicatrix of scattering and B(p) is relaﬁed either to the incident
radiation or an internal source of energy production. Our primary concern
here is with the first two applications and attention will be directed to the
case B(p) a constant.

By an obvious change of variables, Eq. (1) becomes

kR -kR . .
w w
pS(p) = pB(p) + 3 U/‘ 0,8(0,)E (Jp-p,|)ap, - 3 U/\ p,S(-p)E (] p-0,|)dp,;
O (o]

- (3)

The function S(p) is defined initially only for p > 0. Extend now its

definition so that S(p) = S(-p) and introduce the transformations

KR = To , T - T =0 Ty - To =04 > 0S(e)/B = a(r) (4)

where the source function is made dimensionless through division by the con-

stant value of B. Equation (3) then takes the form

2T
a(r) = (r-15) + g _/; ° (T E(|r-7o])ar, (5)

"Equation (5) ;an be interpreted in terms of radiative transfer through
a slab of optical thickness 2175 and with a local*energy generation rate
equal to a linear function of . Special methods developed for the latter
case thus become directly applicable.

A second integral relation can also be derived for calculating the
local energy flux gq, that is, the energy per unit time traversing a unit
area normal to the radial direction. If g =q(p) is expressed as a function

of p and if a net energy flow in the outward direction has a positive value,

the désired relation is

e e s o et e e i S



KR
pq = 2x \/p p,8(py)lp senl(p-p,)Ex(|p-p |) + Eg(|p=p,]|)
o
- B (ptp,) = Eg(o+p,)]de, | . (6)

We shall be especially interested in the total radiation loss from the sphere

and for this reason introduce the symbol W, where W = (p3q/Br) to |

p: RR,
denote this quantity which depends solely on w and the optical radius kR

of the sphere. Evaluating Eq. (6) at p = kR one gets

-

5 KR
W) = 5 [ 0,500, [KRE,(kRupy) + Eo(kRepy)
(o]
a ?
- KREZ(KR+pl) - EB(KR+pl)]dpl (78) E
or
2To .
W(w,T,) = 2 ‘jp Q(afo-vi)[ToEg(Tl) + Ey(r,)]lar) ('Tv)
o]

Differentiation of Eq. (6) and comparison with Eq. (1) establishes the

useful relation

Ior 35 (P70 = Bo - (1-w)eS(p) (8a)

and this reduces, when B is constant, to

e £ (5 - () - Gt (8)
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In the next section a résumé is given of methods whereby surface values
of Q(7) are made available along with the dimensionless radiation loss
W(w,Ty). The mathematical problem is one of inverting the integral Eq. (5)
and this directs attention to the nature of the resolvent kernel of the
equation. Manipulative details have been avoided since they are at times
lengthy and are closely related to the basic calculations of Chandrasekhar?t
and Sobolev.® We have chosen, instead, to concentrate on explicit formulas

and expansion procedures that aid in their evaluation.

APPLICATION OF INVARIANCE PRINCIPLES

Equation (5) is a Fredholm integral equation with symmetric kernel.
It has the general form

Ta

F(r) = G(7) + % d[ F(r)E, (|7-7|)dT, (92)

O

and, after inversion, may be written

T

T=F(T) = G(T) + JF * G(T)LT,7,51g)dT, (9b)
o}

where L(T,Tl;Ta) is the resolvent kernel which is & symmetric function of

T and T,. A grasp on the analytic nature of L d1s achieved through con-

sideration of differential invariants for the specific kernel in hand.

This approach, which arose initially from the physical concept that for

infinite optical thickness surface conditions are not modified by inclusion

of an additional layer of limited depth, can be extended formally to yield

%% + %%I = Q(TI)Q(T) - ®(Ta-Tl)®(Ta'T) (10a)




where
o(7) = L(O,T;7q) (10b)

When 7, > T, Eg. (10a) yields

L(t,,757g) = o(7,-7)
.
+ U/\ [o(t)o(ttr -7) - o(7y-t)o(rg-t-T +7)]at (11)
o atl

The symmetric kernel can thus be calculated in terms of the unidimensional

function ¢(t) where @(7) satisfies the integral equation

.

w

o(t) = > El(T) + % u/\ @(Tl)El(IT—Tll)dTl (12)
o

If Egs. (9a) and (9b) are specialized, one gets the relations

. F(t,p) = e—T/u + % J[‘ F(Tl:H)El(lT'Tll)dTl (13)
- . o

—

Ta
e-T/p' + /" e-Tl/“ L(
(e}

F(T,un) TyTy3Ta)dT; (1)

The values of F({,p) at T =0and T =T, are the Chandrasekhar-
Ambartsumian functions. Denoting these values, respectively, by X(u,Ta) and

Y(u,7,), we get from Eq. (1k)

Ta
X(p,7g) = 1 + b/\ ®(Tl)e'Tl/“ dr, (15)
(o]
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Ta
Y(p,Ta) = e T/t JF Q(Ta—Tl)e-Tl/p dry (16)
o

In the Russian literature these functions are usually denoted as ¢(p) and
¥{p) and referred to as Ambartsumian functions. They actually depend on
the three parameters u,Ty, and w. It suffices here to state that they
have been computed for a wide range of the parameters and that Sobouti®

has also provided their moments op, By, n= 0, 1, 2 where

1
ap(Ta) = f X(p,Ta)u” dp . (17)
o]
. - ,
Bn(Ta) = f Y, )n™ du (18)
0 :

The values of these moments will determine the gquantities we seek.

From comparison of Egs. (5), (9), and (11) we have, after setting

Ty = 2Tg
a(2rg) = -0(0) = 758(70)/B
27,
= Ty + b/‘ (TO—TI)Q(Tl;ETO)dTl
0
27T
= -To¥(27g32T) + f ¥(7 5275)dTy (19)
o)
where

.
¥(r;270) = 1 + J[‘ @(Tl;2To)dTl (20)
o
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Detailed evaluation of these expressions, starting with Eq. (12), leads to

tﬁe following results

1
1- g' (G'o“BO)

¥(2753270) (21)

e

(“o‘ﬁo)]"g (@,-B,)

(2Tg) = (1) ' (22)

In all relations oy = ap(Ty) = an(27o), Bn = Bn(Ta) = Bn(270)-
Chandrasekhar® and Sobolev® have derived fundamental identities satis-
fied by the moment functions. The following relations are useful as checks

of numerical accuracy and also in algebraic manipulation of formulas

G = 1+ u(aB-55)
1
“1'Bl='h@-‘§(%r&ﬂ]: ‘”=1> (23)
‘\2@2 - % = w[(QQGO‘Bzﬁo)"% (ai‘ﬁi)]

J

Equation (22) prdvides the exact prediction of the surface values of
the source emission function. It reduces to an indeterminate form in the

special case w = 1. The desired expression then becomes
1 2
(27g) = 5 To(al-Bl)+-% To(a2-82)4-% (as-Bs) s w=1 (24)

The evaluation of radiation loss, as expressed by Eq. (7b), depends
upon & knowledge of the variation of Q(7). Since the resolvent kernel

is expressed in terms of ©(7) by Eq. (11), and o(7) is related to ¥(t)
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by Eq. (20), the inversion of Eq. (9b), with F(7) replaced by Q(+) and

G(T) replaced by T - To, can be manipulated algebraically to give

.
a(r) = -1¥3(275327,) + w(zTo;zTo)f [¥(7 5270) + ¥(21g-T35275)ldT
o]

+ [¥(71;270) - Y(ETO—T;QTO) + ¥(274327,) ]
27,

. [TOY(QTO;ETO) -J[ Y(Tl;2To)dTl} ‘ (25)
)

Substitution into Eq. (7b) permits one to arrive at a prediction in
terms of known functions. After algebraic simplification the formula

becomes

W(w, 7o) = 20(27,) [(aatBz) + To(ar+P1)]

- 2¥(27g;270) [ (az-Bz) + To(az-B2)] , w # 1> (26)

W(l;To) =

ow

|
Wi
_.]

When w = 1 the radiation loss function W can be derived directly
through physical considerations of radiative heat transfer. If q is
energy fluxvéf&ﬁhe surface of the sphere, a balance between total rate
of loss at the surface and total rate of energy broduction within the
sphere yields the relation LWnR®q = (hﬂR3/3)[hﬂKB], where the bracketed
term, as noted previously, is rate of energy production per unit volume.
The equality reduces immediately to W(1,To) = th/3. Integration of ;
Eq. (8b) from 7 = To to T = 215 1leads to the same conclusion when
w= 1.
Equations (22), (24), and (26) comprise the specific results of this

section. Actual predictions now follow by means of simple arithmetic operations
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through use of the moment functions of X and Y. Sobouti's® taﬁles give
a, and By for n =0, 1, 2,and 27, < 3. The accompanying Table I gives
additional values of a5 and B, computed from Sobouti's® table of X and Y
functions. Graphical results will be given in the next section.

For optical thicknesses of increasing magnitude it is convenient to

resort to asymptotic relations given by Sobolev.® When w = 1, Sobolev's

results are

X(u,Tg) ~ H(w) - wH()/(vgtr) - (27)

Y(u,7y) ~ uH(p) /(7o) (28)

Here, H(u) is Chandrasekhar's® H function which corresponds to the planar
problem for a semi-infinite medium. The constant 7y is twice the ratio of
the second and first moments of H(u). Denoting the nth moment of H(u)

by O where Gdp = an(®), the following values apply when w = 1

N
%y = a(®) = 2 @, = ay(®) = 2N3
a, = a,(») = 0.82035 ay = ag(®) = 0.63782 > (29)
g = ag(o) = 0.52223 y = 1.42089 )

The values for n = 3, 4 were calculated from the tabulated values of H(u)
given by Stibbs and Weir.'! Previously given values for n = 0, 1, 2 were
recalculated as a check on the numerical accuracy. Differences appeared

only in the fifth decimal place.
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From Egs. (27) and (28) the asymptotic moment relations for w = 1 are

\
an(7.) ~ @ - nty
miTa) ~ %n Ty + 7 $
(30)
Gnt1
T
J

These relations, together with Eqs. (24) and (26), provide the following

predictions at w = 1
a(2ry) - 3a _ - 3 -
o/ L 3= 3 1 3,
T ~ 3 Tody t 5 Gy + T o <}da2 + 3a, + T;) (31)

;-

SV By

W(1,75) ~ (7+2TO)[J—% 9(2To)-~/'3'(€3+vo€2)} + 2J3(@atTds) = 3 15 (32)
Values calculated from Egs. (31) and (32) may be compared directly with the
tabulations of surface source strength and energy loss given by Cuperman
et al.® At To = 10 agreement is excellent for their most precise calcula-
tions of the emission function. Their approximate predictions of energy
loss are, however, more accurate than were the detailed calculations.

It remains to estimate the range of T, for which the asymptotic
expressions can be used safely. A measure of this range follows after
comparison of the predictions in Egs. (30) and Sobouti's numerical evalua-
tion of the moments, Sobouti's tables for n =0, 1, 2 stop at 74 = 3
and at this end point the differences between the predictions of Egs. (30)
and the tabulated values differ at worst in the fourth decimal place.
Equations (31) and (32) should therefore yield about four figure accuracy

for. 7452 1.5.

H
L
i
£
¢
{
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When w £ 1, Sobolev's!® asymptotic relations are less simple. In the
2

present notation, one has

X(#,7a) ~ H(w) - C g H(w)e =T (33)
Y(u,7g) ~ Cy I:%; H(u)e *Ta _ (34)

The parameter k depends on w and is a root of the characteristic equation

gleud“‘g‘m'likwl (35)
2 O

1-kp -~ 2k P Ik

Its values are given by Chandrasekhar! (see p. 19). The parameters C and

Cy satisfy the relations

V1
(1-kp)? o 1-k%u®

o [THekm o MHema
o]

o N
cy | HEel_ g [ H g (31)
o (l-ku) o 1-k%®

Taking moments of Egs. (33) and (34), one has

1 n+ .
-2kTg [ ]J_]_—E&&l dp ( 38 )
Yo

an(Ty) ~ an - Ce

1 n+
bn(ra) = ce™e [T HH) o (39)
o
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. Thus, by virtue of Eg. (35)

an(Tg) ~ Oy - c =) % (40)

Bu(Ty) ~ C, ( ZQ% kma—m | (41)

For the present purposes, a more convenient approximation follows by
using tabulated values of «,(Ta) and Bn(ty) for all 74 < 3 and extrap-
olating for greater thicknesses by assuming the tabulations agree with

the asymptotic predictions at 79 = 3. This modification yields

on(Ta) ~ & - [Gg-an(3)]e 2 Ta2) (42)

-k( Ta —3)

Bn(ta) ~ Bp(3)e (43)

So far as is known, the variation of the parameters C and C; with w is
not availéble in the literature. Precise calculation over the full range
of w and k demands a considerable degree of accuracy in H(pn). In the
results to follow we have used Egs. (42) and (43) throughout.

For small values of optical thickness, Chandrasekharlt (p. 204, et seq.)
has given the appropriate expansions for the X and Y functions and their

moments., The simplest forms of these expressions are

e
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N
X(u,mg) = 1 + A(Ta)p(l-e-Ta/“)
Y(,ma) = eTM 4 A(rg)u(1-eTa/H)
) > (1)
1 Ll
G»n(Ta) P .1'_1:'—1- + A(Ta)l_n—+§ - En_,_s("ra)}
Bn(Ta) = En+2(7a) + A(Ta)l:'h—i‘é' - En+3('ra)}

J.
where

(1-w)
1- 2 W[1-Eg(r,)]

1 - 2 W[ 14E,(75)] -

A( Ta) =

The range of validity of the approximations is small and more accurate
representations are available. If accuracy beyond three decimal places is

desired, use of Egs. (44) should be limited to T, < 0.1.
RESULTS

Figure 1 shows graphically the dependence of the source function at

the surface, Q(275)/7y = S(70)/B, on w and the optical radius of the sphere.

The curves represent the predictions of Egs. (22) and (24) and the points
used in plotting the curves were calculated for those values of w listed
in Table I. From Eq. (22) it follows that when w = 0, a(avy) /1y is
independent of Toe As w nears 1 it is apparent that increasing demands
are made on the accuracy of (0y-Bg) and (o;-B;). The limiting case, w = 1,

is given exactly by Eq. (24), however, and a consistent, monotonic variation

of the graphs followed from the tabulated moments except for w = 0.95,

{g.l

J— i
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Ty < 2. In this region the curves were faired to conform with the known

—-—

end value. Isolated comparisons with published predictions‘*’6

show good
agreement. From Sobouti's tables the following results were determined

for w=1

To 0.5 1.0 1.5 2.0 3.0 5.0

a(27g) /7o 1.256 1.520 1.787 2.064 2.622 3.755

At this value of w, Eq. (31) gives an approximate expression for the
source function when 745 >> 1; when 75 << 1 Egs. (EM)and (L4) yield
Q(ETO)/TO ~ 1+ 0(13).

Figure 2 shows the variation of the radiation-loss function as cal-
culated from Egs. (26). An analytic contrast appears in the calculation of
the source function and the loss function at extreme values of w, Thus,
the former is fixed at w = O and has a more complex behavior at w = 1;
the latter is determined simply at w = 1 and is subject to more careful
consideration at w = 0. Since, however, Q(T) = T - To Wwhen w = 0,
this variation ﬁé& be used together with Eq. (7b) to get

AN

W(0,7,) = % (1+210)e ™™ + 13 - 2 (45)

When T4 << 1, one has W(0,T,) = % TS+ O(Tg) and when 14 >> 1,
W(0,To) ~ T2 + O(1). Again, the tabular values of the moment functions
gave smooth, monotonic functions of w and T, throughout the range of
calculation except for w = 0.95, 7o < 2.

‘The previous work has been based entirely on the use of functions and

moments derived originally for use in astrophysical problems. In these

<1g.2
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concluding paragraphs the solution to Eq. (l), or (5), for w=1 1is
rélated to other numerical results that have appeared within the past
few years in the engineering literature. In the latter case, the par-

ticular problem of radiative heat transfer between heated parallel walls

and through a grey medium that may be generating energy has been considered

(see, e.g., Usiskin and Sparrow,? Viskanta and Grosh,»® and Howell and
Perlmutterl®). In the most general form of the problem the walls have
known emission coefficients but it is possible to reduce the analysis to
black-wall emission. These details will not be repeatethere. It is to
be remarked merely that the general solutibn may be expressed as a linear

combination of solutions of the uncoupled integral equations

Ta
o(T) = %‘EZ(Ta-T) + % u[ (r)E (|r-7,|)dry (46)
(o]
1.1 [®
0s() = E+ L [ og(aum,(from, Par, (u7)
(o]

where T = kx and X is the distance measured from one of the walls.
Optical distance between the walls is T,. The dependent functions are

representations of dimensionless temperature functions

T*(x) -0Te, |
o(7) = F—E‘—Lf'—ﬂ (48)
0Tyo-0Ty B0
o [oTt(x) 0T,
95(7) = 'Lg—uf@—c—uJT i (49)
Wi~ w2
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where T(x) is temperature distribution through the medium; Ty and Ty,

are,'respectively, the two wall temperatures and o is the Stefan-Boltzmann

constant. In both instances the walls emit as black bodies. Equation (L48)
is the solution for B = O and Egq. (49) the solution for Ty, = Ty.-
Calculations of these functions have been carried out ab initio and the
results may be found in the cited references and elsewhere. In most cases
the solutions are presented graphically and can be read to,at most, two or
three significant figures.

Known solutions to Eqs. (46) and (47) can be transformed without
excessive labor into the solution of Eg. (5). Starting with Eq. (47),
a new function 5(T) is introduced where

*

~ T
B = [ selraen, - (50)
Ta/2

Equations (50) and (47) yield

. Ta
A7) = (T-% T%) + %-ﬁ(Ta)[Eg(Ta—T)—Eg(T)]+-% b/ a(Tl)El(lT—Tl‘)dTl (51)
o

The solution Q(T} of Bq. (5) for w = 1 can now be expressed as a linear

combination of 5(7) and o(T). Setting T4 = 27& one has

a(r) = (7) + Q(erg)[1-29(7)] (52)

Equation (52) relates the variation of the emission function @(T) to
o(T) and 0(T), the latter following from an additional running integration
of the known function o (7).

Figure (3) shows the source function S(p)/B = a(7)/(r-7,) calculated <:§E§-
from‘Eq. (52) by using unpublished aumerical solutions of Egs. (46) and

(47) computed by the present writers.
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FIGURE LEGENDS

Fig. 1.- Dimensionless source function at surface of sphere, showing
dependence on optical radius and the parameter w.

Fig. 2.- Dimensionless radiation-loss function for sphere, showing
dependence on optical radius and the parameter w,

Fig. 3.- Variation of source function within sphere for selected values

of optical radius and w = 1,
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